A posteriori error analysis of the fully discretized time-dependent Stokes equations
نویسندگان
چکیده
The time-dependent Stokes equations in twoor three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization. Résumé: Nous considérons les équations de Stokes instationnaires dans un ouvert borné biou tri-dimensionnel, ainsi que leur discrétisation par un schéma d’Euler implicite en temps et des éléments finis en espace. Deux types d’indicateurs d’erreur faciles à calculer sont décrits, l’un étant lié à la discrétisation en temps, l’autre à la discrétisation en espace. Nous les utilisons pour démontrer des estimations a posteriori de l’erreur globale. Nous prouvons aussi des majorations de ces indicateurs par des erreurs locales. 1 Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, F-75252 Paris Cedex 05, France. E-mail address: [email protected] 2 Ruhr-Universität Bochum, Fakultät für Mathematik, D-44780 Bochum, Germany. E-mail address: [email protected]
منابع مشابه
A Posteriori Error Analysis of the Time Dependent Navier-stokes Equations with Mixed Boundary Conditions
In this paper we study the time dependent Navier-Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization. We fin...
متن کاملA Posteriori Error Analysis of the Time Dependent Stokes Equations with Mixed Boundary Conditions
In this paper we study the time dependent Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We establish an optimal a posteriori error with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.
متن کاملOptimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair (Xh,Mh) which satisfies some approximate assumpt...
متن کاملA Posteriori Error Estimation for an Interior Penalty Type Method Employing $H(\mathrm{div})$ Elements for the Stokes Equations
Abstract. This paper establishes a posteriori error analysis for the Stokes equations discretized by an interior penalty type method using H (div) finite elements. The a posteriori error estimator is then employed for designing two grid refinement strategies: one is locally based and the other is globally based. The locally based refinement technique is believed to be able to capture local sing...
متن کاملA Posteriori Error Analysis of Space-Time Finite Element Discretizations of the Time-Dependent Stokes Equations
We present a novel a posteriori error analysis of spacetime finite element discretizations of the time-dependent Stokes equations. Our analysis is based on the equivalence of error and residual and a suitable decomposition of the residual into spatial and temporal contributions. In contrast to existing results we directly bound the error of the full space-time discretization and do not resort t...
متن کامل